X線CT画像の画質向上に関する研究 --X線スペクトルを考慮した画像再構成手法の提案--

○李根旭,小関道彦,木村仁,伊能教夫 東京工業大学,東京都目黒区大岡山 2-12-1

A Study of Quality Improvement of X-ray CT Image

- Proposal of CT Reconstruction Method Considering the X-ray Spectrum -

Keunuk LEE, Michihiko KOSEKI, Hitoshi KIMURA and Norio INOU

Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8550 JAPAN

X-ray Computed Tomography (CT) reconstructs cross-sectional images of an object using projection data that reflects X-ray attenuation of the object. It has potential to have a great contribution in nondestructive inspection. However, its industrial applications are limited due to image noise called "metal artifact." The primary factor of the artifact is that a current X-ray CT theory does not consider the X-ray energy spectrum. In this report, we propose a method to estimate monochromatic projection data by use of ordinary polychromatic X-ray. A numerical simulation result shows that the method has a remarkable effect on metal artifact reduction.

1. はじめに

X線 CT は X線の透過性を利用して対象物の断面 をコンピューター上で再構成する技術である. X線 CT は製品内部を非破壊で観察することが可能なた め、様々な部品がユニット化されたデバイスの組み 立て精度の検査,熱や荷重に対する疲労状態の非破 壊検査などに非常に有用であると考えられる.

しかし,撮影対象が金属などの物質を含んでいる 場合,そのX線CT画像にはメタルアーチファクト

(Metal artifact) と呼ばれる画像ノイズが発生し, 画質を劣化させることが知られている.図1は高分 子樹脂と金属でできたデバイスを模擬して製作した 実験用サンプルであり,アクリル円柱の中に9本の 鋼(S45C)製の金属ピンが入っている.このサンプ ルをX線CT撮影した結果が図2である.金属ピン の周りに放射状のメタルアーチファクトが発生し, アクリル樹脂の状態や金属ピンの形状が正確に把握 できない.

本研究の目的は再構成画像からこのようなメタル アーチファクトを低減し,工業用途に適したX線CT

図 1. 実験用サンプル

5000 CT値[HU] 水のX線吸収係数 =0.04[mm⁻¹]で換算 -1500

図 2. 従来手法による再構成画像

技術を確立することである.本報では,X線のスペ クトルを考慮して投影データを計算し,再構成画像 のメタルアーチファクトを低減する手法を提案する. また,数値シミュレーションでその効果を確認する.

2. メタルアーチファクトの発生原因

メタルアーチファクトが発生する主な原因として, 従来 CT の再構成理論が X 線のスペクトルを無視し ていることが挙げられる.

このことを説明するために,まず従来の X 線 CT 再構成理論について考える.図 3 はファンビームを 用いた X 線 CT 撮影の模式図である.X 線源から発 生した X 線は撮影領域を通過し,反対側の検出器に 到達する.撮影対象の回転角度が θ のとき,検出器の 位置 τ に向かう直線 $L(\tau)$ 上の X 線強度 $I(\tau)$ は,撮影 対象の X 線吸収係数 $\mu(x, y)$ によって減衰する.従来 の X 線 CT 理論では $\mu(x, y)$ を次のように定義する.

$$\frac{dI(\tau)}{dl} = -\mu(x, y)I(\tau) \tag{1}$$

これより、X線源から発生した元のX線強度を $I_0(\tau)$ とすると、次の式が成り立つ.

$$I(\tau) = I_0(\tau) e^{-\int_{L(\tau)} \mu(x,y) dl}$$
(2)

$$\int_{L(\tau)} \mu(x, y) dl = -\ln \frac{I(\tau)}{I_o(\tau)}$$
(3)

この式(3)の左辺が X 線吸収量であり,検出器配 列が読み取った X 線吸収量が投影データである.こ の投影データを FBP 法などの画像再構成アルゴリ ズムを用いて変換することで図 2 に示したような一 枚の CT 画像が得られる.図 4 は図 2 の CT 画像を 再構成するために用いた投影データを示している. 投影データの式から,X線が X 線吸収係数一定の物 質を透過する場合は投影データがその物質の厚みに 比例すること,つまり図 4 の投影データでは金属ピ ンの数に比例するべきであることがわかる.しかし, 図 4 (c)を見ると,金属ピンが1本,2本,3本に 増えてもその投影データは緩やかに増加するだけで, 比例しているとは言いがたい.

このような現象が起きる原因は上述した従来の X 線 CT 理論で X 線のスペクトルを無視していること である.通常, CT 撮影に使用される X 線は多色光 であり,エネルギースペクトルを持っている.図 5 は本研究に用いているマイクロフォーカス X 線 CT 撮影装置 ScanXmate - A130SS940(コムスキャン

3 3 2 1 1 0 $\aleph 0$ 回転角度 $\theta[]$ 90 511 検出機番号 (b)投影データ(*θ*=90°) 180 3 X線吸収量 270 2 360 511 検出機番号

図 3. ファンビーム X 線 CT 撮影の模式図

図 4. 従来手法による投影データ

(c)投影データ(*θ*=135°)

(a) 全投影データ

テクノ株式会社製)のX線をスペクトルアナライザ で調べた結果である.このグラフではX線の波長の 代わりに光子のエネルギーを横軸にして表している. X線の管電圧や管電流,ターゲットの種類によって X線のスペクトルは変化する.また,物質のX線吸 収係数は図6に示すようにX線のエネルギーに依存 する[1]ため,実際の現象はX線のエネルギー別に考 慮する必要がある.X線のスペクトルを考慮すると, 式(1)および式(2)は次にように書くべきである.

$$\frac{d}{dl}\frac{\partial I(\tau, E)}{\partial E} = -\mu(x, y, E)\frac{\partial I(\tau, E)}{\partial E}$$
(4)

$$I(\tau) = \int_0^\infty \frac{\partial I(\tau, E)}{\partial E} e^{-\int_{L(\tau)}^{\infty} \mu(x, y, E) dl} dE$$
(5)

ここで, EはX線のエネルギーであり,式(5)の左 項が検出器による測定値になっている.もし,測定 値から単一エネルギーに対する投影データを求める

ことが出来れば、その再構成画像からメタルアーチ ファクトを除去できると考えられる.しかし、式(5) では式(3)のように簡単に投影データについて解く ことができない.なぜならその計算は測定値ひとつ から無数の投影データを求めることを意味している ためである.

3. X線のスペクトルを考慮した投影データの算出方法

X 線エネルギーの連続性をそのまま考慮すること は難しいため、ここでは X 線が N 種類のエネルギー のみで構成されていると仮定する.この場合、X 線 強度 $I(\tau)$ は検出位置 τ に到達した光子のエネルギー の合計と見なすことができるため、

$$I(\tau) = \sum_{i=1}^{N} E_i n(\tau, E_i)$$
⁽⁴⁾

と表せる. ここで, E_i は光子のエネルギー, $n(\tau, E_i)$ は検出位置 τ に到達したエネルギー E_i を持つ光子の 数である. X線吸収の理由は主に光電効果とコンプ トン散乱であり, 注視線 $L(\tau)$ の上を進む光子の数が 減ることはあっても光子のエネルギーが変わること はない. 従って, エネルギー E_i に対するX線吸収係数 $\mu(x, y, E_i)$ は $n(\tau, E_i)$ の変化に伴うものだということが でき,式(1)は次のようになる.

$$\frac{dn(\tau, E_i)}{dl} = -\mu(x, y, E_i)n(\tau, E_i)$$
(5)

すると,投影データの式(3)は

$$\int_{L(\tau)} \mu(x, y, E_i) dl = -\ln \frac{n(\tau, E_i)}{n_0(\tau, E_i)}$$
(6)

と表される.ここで $n_0(\tau, E_i)$ とは撮影対象が置かれて いなかった際に検出位置 τ に到達したエネルギー E_i を 持つ光子の数である.次に,式(2)は次式で表せる.

$$I(\tau) = \sum_{i=1}^{N} E_{i} n_{0}(\tau, E_{i}) e^{-\int_{L(\tau)} \mu(x, y, E_{i}) dl}$$
(7)

ここで、金属板をフィルタとして用いることによ りX線スペクトルを変化させることができ、金属板の 各エネルギーに対するX線吸収係数および厚さが分 かればその分布の変化率を求めることが可能である ことを利用する.すなわち、各エネルギー E_i に対す るX線吸収係数 $\mu_k(E_i)$ 、厚さ l_k のM種類の金属フィル タをX線管と検出器の間に置いた場合、エネルギー E_i の光子の数は $e^{-\mu_k(E_i)l_k}$ 倍されるため、次式が成り立 つ.

$$I_{k}(\tau) = \sum_{i=1}^{N} E_{i} n_{0}(\tau, E_{i}) e^{-\int_{L(\tau)}^{\mu} (x, y, E_{i}) dl} e^{-\mu_{k}(E_{i}) l_{k}}$$
(8)

(ただし、 *k*=1,2,3,...,*M*)

この式は連立一次方程式になっており,*M*≧Nのとき 解を持つ.このため,その解の自然対数を取ること で各エネルギー別の投影データを得ることができる. この方法は次のような長所がある.まず,離散化

した X 線スペクトルを使用するため, X 線スペクト ルを正確に把握していない状態でも適用できること である.また,たとえ X 線のスペクトルが分からな い場合でも類似のアルゴリズムにより X 線のスペク トルを推測できることである.もし,撮影領域に物 体を置かずに金属フィルタをセットして撮影した場 合,式(8) は

$$I_{k}(\tau) = \sum_{i=1}^{N} E_{i} n_{0}(\tau, E_{i}) e^{-\mu_{k}(E_{i})l_{k}}$$

$$(\tau, \tau) = \sum_{i=1}^{N} E_{i} n_{0}(\tau, E_{i}) e^{-\mu_{k}(E_{i})l_{k}}$$
(9)

となる.これは、 $n_0(\tau, E_i)$ を解とする連立方程式になっており、(8)を解いた方法と同様に計算すること

ができる.

理論上, N が無限になればエネルギー分布は実際 のスペクトルになり, X 線スペクトルに起因したメ タルアーチファクトはなくなると期待される.ただ し,実際には測定値の精度や測定および計算に要す る時間の制約等から N をある程度以上大きくするの は難しいと予想される.

以上の内容を踏まえて,本手法の具体的な過程を 次に示す.

ステップ1【X線スペクトルの近似】

撮影に使用する X 線のエネルギーの範囲内で代表 値といえるエネルギーを N 種類選定する.

ステップ2【X線スペクトルの同定】

撮影する物体を置いていない状態でX線強度を測定する.厚さとX線吸収係数が既に分かっている金属板をX線源と検出器の間に置き,続けてX線強度を測定する.この測定を金属フィルタの種類を変えながらN回繰り返し,式(9)を解いて $n_0(\tau, E_i)$ を調べる.もしX線のスペクトルが既に分かっている場合はそれに合わせて $n_0(\tau, E_i)$ を割り振る.

ステップ3【各エネルギー別投影データの計算】

ステップ 2 と同様に金属フィルタでスペクトルを 変化させながら対象物をN回CT撮影する.得られた 測定値 I_k (τ)から式(8)を用いて各エネルギー別の投 影データを計算する.

4. 結果

提案した手法を数値シミュレーションに適用し, 妥当性を検証した.まず,図1のようなサンプルを 模擬して仮想ファントムを作成した.次に,図5の 本物のスペクトルに似せたエネルギー分布を持つ多 色光での仮想投影を施した.仮想投影は金属フィル タなしの場合,アルミニウム板2.5mmを置いた場合, アルミニウム板5.0mmを置いた場合の3通りに実施 した.仮想ファントムの材質は鉄およびアクリルと し,各材料のX線吸収係数は文献値を使用した[1]. その後, N=3, E₁=30keV, E₂=50keV, E₃=80keVとして 提案手法どおりに計算した.その結果として得られ た投影データを図7に示す.30keVと50keVで算出さ

図 7. 提案手法による投影データ(*θ*=135°)

(a)従来の手法
 (b)提案手法
 -1500 CT 値[HU] 5000
 水のX線吸収係数=0.04[mm⁻¹]で換算
 図 8. 再構成画像の比較

れた投影データでは解の誤差が対数計算で増幅され ノイズが多いが,80keVでは比較的に良好な投影デー タが得られている.従来手法による投影データ図(4) と比較すると,値が金属ピンの本数に正しく比例し ている.

このようにして得られた 80keV の投影データを FBP 法により画像再構成を行った結果が図 8(b) である. 従来手法による投影データを再構成した図 8(a) と 比較すると,金属ピンの形状がはっきり分かるよう になり,金属ピンの間のアーチファクトは大幅に低 減されている.アクリル領域のザラザラとした画像 ノイズは図 7 の投影データに現れた近似計算による 誤差によるものであると考えられる.

5. まとめ

X線CT画像のメタルアーチファクトは投影データ

が矛盾を含んでいることで起きる.また,その矛盾 は従来の X線 CT の再構成理論が X線のエネルギー スペクトルを無視していることに起因する.本報で は,X線のスペクトルを考慮した CT 画像再構成方 法としてスペクトルを離散化し,エネルギー別の投 影データを計算する手法を示した.数値シミュレー ションの結果,CT 画像のメタルアーチファクトが大 幅に低減され,画質が向上したことを確認した.

今後は実際の CT 撮影に本手法を適用するととも に、より多くの対象に提案手法を適用し、その効果 を検証する必要がある.

謝辞

本研究は,独立行政法人新エネルギー・産業技術総 合開発機構(NEDO) 産業技術研究助成金(プロジェ クト ID 05A29002d)によって行われた.

参考文献

[1] J.H. Hubbel and S.M.Seltzer, "Tables of X-ray mass attenuation coefficients and mass energy - absorption coefficients 1 keV to 20 meV for elements z=1 to 92 and 48 additional substances of dosimetric interest,"

http://physics.nist.gov/PhysRefData/XrayMassCoef/, 2004.